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ABSTRACT 
 

Despite comprehensive literature works on developing fitness-based optimization 

algorithms, their performance is yet challenged by constraint handling in various 

engineering tasks. The present study, concerns the widely-used external penalty technique 

for sizing design of pin-jointed structures. Observer-teacher-learner-based optimization is 

employed here since previously addressed by a number of investigators as a powerful meta-

heuristic algorithm. Several cases of penalty handling techniques are offered and studied 

using either maximum or summation of constraint violations as well as their combinations. 

Consequently, the most successive sequence, is identified for the treated continuous and 

discrete structural examples. Such a dynamic constraint handling is an affordable 

generalized solution for structural sizing design by iterative population-based algorithms.  
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1. INTRODUCTION 
 

Most of the real-world problems are distinguished with constraints that must be satisfied 

prior to accept the arbitrary or optimal designs. Structural problems are a common set 

among them that usually include several inequality constraints [1,2]. Up to date, there exists 

compromise between computational efficiency in cost reduction and feasibility preservation 

[3–6]. Therefore, developing efficient constraint handling techniques is still an active field 
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of research. 

Early years of such a research activity is identified by explorative attempts to develop 

various ideas [7]. They can be categorized within: special operators, decoders and mappers, 

separation of objective function and constraints or integrating them via penalty functions [7]. 

Repair-operators and decoders may be suited to some combinatorial problems. However, 

penalty approaches are among the well-accepted and widely used techniques for numerical 

engineering applications. They are themselves divided into sub-categories including: static 

penalty, adaptive penalty, dynamic penalty, annealing and co-evolutionary penalties. 

Another approach is to discard infeasible solutions that arise during optimization; it is 

known as death penalty.  

Meta-heuristic algorithms include population-based methods that essentially deal with a 

single objective function to be sampled over the search space [8]. So they mostly use single 

penalty functions when dealing with constraint engineering problems. A number of recent 

algorithms in this category can be referred to as Water Evaporation Optimization [9], Heat 

Transfer Search [10], Switching Teams Algorithm [11], Plasma Generation Algorithm [12], 

Social Network Search [13], Remora Optimization Algorithm [14], African Vultures 

Optimization Algorithm [15], Blood Coagulation Algorithm [16], Escaping Bird Search [17] 

and Black Hole Mechanics Optimization [18].  

Penalty approaches usually maintain some problem-dependent factors to be specified for 

optimization. In order to better study their effects, it is desired to deal with the algorithms 

that have minimal number of control parameters to be tuned. Here, we consider Observer-

Teacher-Learner Based Optimization (OTLBO) as an enhanced variant of TLBO that have 

already received attention in civil engineering problems [19–22]. 

The most popular approach in constraint handling; i.e. linear external penalty is 

concerned here-in-after. In this regard, two basic constraint violation functions are 

distinguished and performance of their offered consequences is compared through a 

comprehensive study using discrete and continuous structural sizing examples.  

 

 

2. OPTIMIZATION ALGORITHM 
 

Teaching-Learning-Based Optimization (TLBO) [23,24] is a popular method with wide 

applications in several engineering fields [25–28]. Such a meta-heuristic algorithm simulates 

the knowledge growth in a classroom via distinct phases; the first is improving the mean 

level of the students’ grades by a teacher while the second mimics learning via interaction 

between students themselves.  

As an enhanced variant of TLBO, Observer-Teacher-Learner-Based Optimization, 

OTLBO, has been introduced by embedding an observer-phase to the algorithm [16]. It 

applies extra memory exploitation for more effective search. OTLBO has already been 

applied to various engineering problems including ground motion scaling [16], optimal 

sizing of structures [17], active and semi-active control of high-rise buildings [18] and 

prediction of environmental phenomena by embedded machine learning [19]. Consequently, 

OTLBO is considered as one of the powerful methods in the class of parameter-less 

algorithms. The steps of OTLBO algorithm are reviewed as follows:  
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- Initiation; generate a random population of pN  classmates between their lower and upper 

limits 
L

jx and 
U

jx  in any jth subject, respectively.  

 

( ( ))
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j j j j

p d
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i N j N

   
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 (1) 

 

(.)q  denotes a function to preserve upper and lower bounds and to round variables for 

discrete problems. rand is a random generator. 

- Rank the classmates in Population (Pop.) based on their marks. Identify the global best as 

the teacher: 
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- For any ith student, perform either Teacher-phase or Observer-phase by equal chance: 

o Teaching phase: construct a candidate classmate obeying the teacher as: 

 
, ,( ( ))new i old i Teacher Mean

fX q X rand X T X     (3) 

 

where as fT  denotes a teaching factor that randomly switches between either 1 or 2 .   

o Observer phase: For any ith student, construct the following candidate solution by 

exploiting the memory for every its jth component:  

 
,new i Exploited

j jX X  (4) 

 

o Greedy selection: replace
iX  with 

,new iX  if 
,new iX  is better than it. 

- Learning phase: perform interactive actions between couples of classmates:  

o Randomly select a couple of distinct classmates number i and j. 

o Determine 
,new iX  by: 

 
, ,

, ,

( ( )) if ( ) ( )

( ( ))

new i old i j i j i

new i old i i j

X q X rand X X Fit X Fit X

X q X rand X X otherwise

    

   
 (5) 

 

o Greedy selection: replace
iX  with 

,new iX  if 
,new iX  is better than it  
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- Repeat the aforementioned phases for the prescribed number of ierations, maxt .  

A brief main code of OTLBO is given in the Appendix, employing general subroutines 

that interested user can adapt for population-based methods.  

 

 

3. SIZING PROBLEM FORMULATION  
 

A vast category of structural optimization problems, is characterized by minimizing the 

amount of construction material subject to behavior constraints on structural responses as 

well as the simple bounds on member sizes. Satisfying the system of equilibrium equations, 

is a crucial requirement that is implicitly applied via structural analysis rather than explicitly 

arising in the problem formulation. The structural sizing problem can be formulated to 

minimize structural weight, W, as: 

 

min ( )

s.t .

( ) 0 , 1,...,

L U

i

j c

W X

x x x

g X j N

 

 

 (6) 

 

The side constraints are commonly satisfied by a fly-to-boundary technique for enforcing 

the size of member sections to fall within their lower and upper bounds; i.e. 
L

ix and
U

ix , 

respectively.  

In the other hand, structural design codes require that the stress and/or deflection 

responses must fall below their available limits according to the applied loading and the 

corresponding analysis procedure. This last set, constitutes the remained constraints to be 

satisfied during structural optimization. They are generally expressed in the standard form of 

inequality equations as: 

 

( ) 0 , 1,...,j cg X j N   (7) 

 

where Nc stands for the total number of behavior constraints.  

 

 

4. THE PROPOSED CONSTRAINT HANDLING TECHNIQUES  
 

Suppose that violation of every behavior constraint is expressed as:  
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It can be further assessed by either supermom function supV : 

 

V ( ) max ( )sup j
j

X G X  (9) 

 

or summation sumV : 

V ( ) ( )sum j

j

X G X  (10) 

 

Either case can be implemented in form of the following pseudo-unconstrained cost 

function,   to be minimized during the optimization process:  

 

( ) ( ) [1 ( )]PMinimize X f X k V X      (11) 

 

where f stands for the structural weight as the row cost function and pk denotes the 

corresponding penalty factor. In the above equations; X is the corresponding design vector 

denoting the member-group section-areas for the structural sizing problem. 

Optimization of the problem using sumV  will also lower supV while the reverse is not 

necessarily true. Despite the summation, the supermom function does not reveal information 

about total violation of constraints. In the other hand, supV exerts less penalty than sumV on 

individuals that allow more members to approach the active state of their corresponding 

stress/deflection constraints.  

 

Table 1: Definition of the applied penalty-handling types 

PT Phase 1 Phase 2 Phase 3 

1 sumV  sumV  sumV  

2 supV  supV  supV  

3 supV  
sumV  sumV  

4 supV  supV  
sumV  

5 sumV  supV  supV  

6 sumV  sumV  supV  

7 Random Random Random 

PT: Penalty-handling Type 
 

A more comprehensive study is needed to decide which case is better during optimal 

design of a specific structural problem. In this regard, we offer a general framework to allow 

implementation of either cases or sequential combination of them. Consider a typical 
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optimization algorithm that iterates from 1t   up to maxt in its main loop. Let’s subdivide 

total iterations into the following three phases: 

Phase 1: from 1  to max0.25t   

Phase 2: from max0.25t  to max0.75t   

Phase 3: from max0.75t  to maxt   

By altering the choice of violation function among such phases, we offer a number of 

Penalty-handling Types (PT’s) as given in Table 1. Note that either sumV  or supV  is 

implemented in each phase; except for PT-7 that selection of sumV  or supV is randomly done 

by equal chance at every iteration.  

 

 

5. NUMERICAL EXPERIMENTS 
 

Every PT is evaluated on continuous and discrete examples of spatial pin-jointed structures. 

In each example, four different penalty factors are applied within each of 48 independent 

trail runs. OTLBO is used as the optimization algorithm with minimal control parameters of 

maxt and the population size: pN . Table 2 briefs the applied parameters for the treated 

examples. Consequently, 28 different cases of constraint handling is implemented for each 

example as listed in Table 3.  

 
Table 2: Applied parameters for the treated examples 

Example pN  maxt  runsN  gN  SectN  cN  
(1)

pk  
(2)

pk  
(3)

pk  
(4)

pk  

Tower Truss 60 600 48 32 247 1623 70 80 90 100 

Helipad Truss 60 600 48 9 N.A. 1983 50 60 70 80 

N.A.: Not Available 

 
Table 3: List of penalty handling types and implemented penalty factors 

pk  CN PT CN PT CN PT CN PT CN PT CN PT CN PT 

(1)

pk  1 1 5 2 9 3 13 4 17 5 21 6 25 7 

(2)

pk  2 1 6 2 10 3 14 4 18 5 22 6 26 7 

(3)

pk  3 1 7 2 11 3 15 4 19 5 23 6 27 7 

(4)

pk  4 1 8 2 12 3 16 4 20 5 2 4 6 28 7 

   CN: Case Number, PT: Penalty-handling Type 

 

Cardinality of a discrete example with gN member groups and SectN available sections, 

will be ( ) gN

r SectC N . However, SectN is Not Applicable (N.A.) for continuous examples as 
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their member properties can get infinite values within their lower-to-upper bounds. Taking 

into account that in OTLBO the number of function evaluations for each individual at any 

iteration is 2iiFE   [17,19], 193,536,000 structural analyses have totally been performed on a 

multi-processor platform to support reliable results for the present comprehensive study.  

In order to have an insight on resulted feasibility of optimal designs; a statistical measure 

is defined as follows: 

 

100 F

T

N
PFD

N
   (12) 

 

PFD stands for Percentage of Feasible Designs in an experinment being the ratio of the 

feasible designs quantity;
FN over total number of samples;

TN . Tracing such a metric 

declares how an explicit constraint handling technique affects feasibility of the resulted 

optimal designs over the considered set of trial runs.  

 

 
Figure 1. 582-bar tower truss 
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5.1 582-bar tower truss  

The 582-bar space tower is treated here as a large-scale problem with discrete variables. It 

has already been studied by several investigators including [29–31]. As shown in Fig. 1, the 

members are divided into 32 groups. The modulus of elasticity is 29,000 ksi (200 GPa) and 

the material density is 0.283 lb/in3 (7,833.4 kg/m3) with the yield stress of 36 ksi. The stress 

and slenderness constraints are considered during optimization due to AISC-ASD89 

regulations [32] as: 

 

  0.6allowable
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(14) 

 

where λ denotes the slenderness ratio of the corresponding member. It is calculated dividing 

the effective length by section gyration radius. In addition, every nodal displacement is 

limited to 3.15 in (8 cm). As a service constraint, the slenderness ratio is limited to 300 for 

tension members and to 200 for compression members. Horizontal lateral load of 1.12 kips 

(5.0 kN), is applied at each free node in both x and y directions. The upper-part nodes 

undergo downward vertical loads of 6.74 kips (30 kN) where 3.37 kips (15 kN) is applied at 

every lower-part node. The cross sections are selected from a discrete list of W-shaped 

AISC profiles; so that the cardinality of search space in this example is as large as 
763.7 10rC   . 

 

 
Figure 2. Statistical representation of the results for 582-bar tower truss 
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Table 4: Comparison of optimal designs for 582-bar tower truss 

Variable 
ABC 

Case 1[30] 

ABC 

Case 2[30] 

Present 

work 

X1 W8X21 W8X21 W8X21 

X2 W18X86 W10X17 W14X82 

X3 W8X24 W8X24 W8X24 

X4 W10X60 W14X61 W10X60 

X5 W8X24 W8X24 W8X24 

X6 W8X21 W8X21 W8X21 

X7 W10X49 W10X60 W10X49 

X8 W8X24 W8X24 W8X24 

X9 W8X21 W8X21 W8X21 

X10 W12X53 W10X49 W10X39 

X11 W8X24 W8X24 W8X24 

X12 W21X62 W10X68 W10X68 

X13 W27X84 W18X76 W12X79 

X14 W10X45 W14X48 W8X48 

X15 W10X84 W10X77 W24X76 

X16 W8X31 W8X31 W8X31 

X17 W8X21 W8X21 W8X21 

X18 W12X53 W21X62 W14X61 

X19 W8X24 W8X24 W8X24 

X20 W10X22 W8X21 W8X21 

X21 W16X36 W14X43 W8X40 

X22 W8X24 W8X24 W8X24 

X23 W8X21 W8X21 W8X21 

X24 W10X22 W8X24 W8X24 

X25 W6X25 W8X24 W8X24 

X26 W8X21 W8X21 W8X21 

X27 W8X21 W8X21 W8X21 

X28 W8X24 W8X24 W8X24 

X29 W8X21 W8X21 W8X21 

X30 W10X22 W8X21 W8X21 

X31 W8X24 W8X24 W8X24 

X32 W6X25 W8X24 W8X24 

Best W (lb) 368484.1 365906.3 365686.7 

Mean W (lb) 370178.6 366088.4 366747.0 

SD - - 629.80 

SD: Standard Deviation 

 

Fig. 2 shows meaningful difference between distinct sets of PT’s regarding optimality of 

designs. It is observed that sequential applications of sumV  and supV  can reveal lower optimal 

weights than mere application of each; regarding the best or mean samples. The best result 
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has been obtained in CN-14 as a subset of PT-4; i.e. starting 75% of iterations with supV  

followed by sumV  up to the last iteration. Results of applying PT-5 or PT-6 (starting 

with sumV and continuing with supV ) are not as good as those by PT-4 and even PT-3. In a 

general view, PT-7 has not better a performance than PT-1 and PT-6; but stands superior to 

PT-2 and PT-5 in this example.  

 

 
Figure 3. Percentage of feasible designs in the results of 582-bar truss optimization 

 

Another issue to study, is variation of feasibility ratio with changing the penalty handling 

technique. Fig. 3 declares that for each PT, increasing the penalty factor can increase PFD; 

however, it is not a general case in comparison between different PT’s. Note that in PT-1, 

both 
(3)

pk  and 
(4)

pk have led to full PFD. It shows increasing the penalty factor over a 

threshold (
(2)

pk ~80 in this example) has behaved such as applying the death penalty that 

allows no infeasible design.  

 

Table 5: Percentage of feasible designs in optimization of 582-bar tower truss 

CN  PFD CN  PFD CN  PFD CN  PFD CN  PFD CN  PFD CN  PFD 

1 75.0 5 20.8 9 66.7 13 50.0 17 25.0 21 64.6 25 47.9 

2 93.7 6 45.8 10 83.3 14 68.7 18 52.1 22 81.3 26 70.8 

3 100.0 7 77.1 11 95.8 15 83.3 19 79.2 23 93.7 27 81.3 

4 100.0 8 95.8 12 100.0 16 100.0 20 100.0 2 4 100.0 28 100.0 

SD 11.8 SD 33.2 SD 15.0 SD 21.3 SD 32.6 SD 15.6 SD 21.7 

SD: Standard Deviation 

 

The optimal weight of 582-bar tower is obtained 365686.7 lb; that is superior to other 

literature works reported in Table 4. Fig. 3 reveals that such a least optimal weight belongs 

to CN-15 in PT-4. It is worth notifying that the corresponding PFD values in PT-4, have 

fallen within 70% to 100% .  

It can also be realized from Table 5 that standard deviation of PFD varies depending on 

the applied PT. Employing identical set of penalty factors; the most diverse variation of PFD 
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is observed in PT-2 and PT-5. It is while PT-3 and PT-4 has not shown such diverse PFD’s 

over the applied penalty factors, in this example.  

 

 
 

(a) 

 
(b) 

Figure 4. 1104-bar helipad truss: (a) top view, (b) side view [33] 

 

5.2 1104-bar helipad truss  

This example has been introduced by Shahrouzi and Salehi [33] as a continuous real-world 

problem (Fig. 4). Truss members are divided into 9 groups and their section areas vary 

between 10 cm2 and 100 cm2. Material density, modulus of elasticity and yield stress are 

ρ=7850 kg/m3 , E=203.9 GPa and Fy=253.1 MPa, respectively. Uniform gravitational load 

of 300 kgf/m2 is exerted on the top level of the helipad. Besides, concentrated load of 350 kgf 

is applied at each of four central nodes. Stress constraints are applied due to AISC-ASD89 

design code [32]. The nodal displacement in every orthogonal direction is limited to 5 cm.  

According to Table 6, OTLBO in the present work has obtained the best weight of 

helipad among the others; that is 32588.9 kg. According to Fig. 5, such a result belongs to 
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PT-4 (CN-14). It is better than 32999.8 kg as the best of previous works that applied 

pure sumV [33]. In this example, PT-4 has been superior to the others regarding both the best 

and mean optimal weight. PT-3 is on the second rank while PT-2 and PT-5 have not been as 

good as the others. Again PT-7 with random selection of either case, has stood on a 

moderate rank. Fig. 5 also declares that starting with supV  and continuing with sumV leads to 

lower costs in the treated structural problem. 
 

Table 6: Comparison of optimal designs for 1104-bar helipad truss 

Variable BA [33] LAPO [33] ICA [33] ICLBO [33] Present work 

A1 (cm
2
) 15.09 34.88 34.88 40.03 12.55 

A2 10.13 16.36 16.36 19.27 13.79 
A3 19.57 10.00 10.00 10.00 10.00 
A4 23.75 22.87 22.87 23.21 27.30 
A5 35.56 42.68 42.68 29.15 32.50 
A6 45.93 22.6 22.6 20.45 17.30 
A7 49.31 41.51 41.51 16.94 29.94 
A8 14.49 46.19 46.19 27.43 29.16 
A9 52.54 66.17 66.17 82.82 50.96 

Best W (kg) 35520.62 36440.05 36440.05 32999.8 32588.9 

Mean W (kg) 47511.46 38020.01 38020.01 36781.07 33446.77 

SD - - - - 591.47 
 

 
Figure 5. Statistical representation of the results for 1104-bar helipad truss 

 

It can also be noticed that the best penalty factor differs among different PT’s. Such a 

first rank of optimal cost belongs to 
(1)

pk in the PT-1 and PT-3, 
(2)

pk in PT-4 and PT-6 and 

(3)

pk in the PT-2, PT-5 and PT-7. It is while 
(4)

pk has not taken the first rank in any PT. Fig. 6 

reveals that applying such a high penalty factor has resulted in full feasibility of optimal 

designs and acts such as the death penalty technique. It again confirms that penalty factors 

below a large threshold of full feasibility, can provide better optimality in the resulted cost 



SEQUENTIAL PENALTY HANDLING TECHNIQUES FOR SIZING DESIGN … 

 

155 

values. In another word, it is not expected that the treated penalty methods, simultaneously 

provide full feasibility and the best optimality. 

 

 
Figure 6. Percentage of feasible designs in the results of 1104-bar truss optimization 

 

In addition to Fig. 6, Table 7 gives an insight to compare the deviation of PFD’s among 

different PT’s, in this example. It is observed that applying pure supV has led to more diverse 

PFD’s. In contrary, the least standard deviation of PFD’s belongs to PT-3 that starts with 

supV and continues with sumV . 

 
Table 7: Percentage of feasible designs in optimization of 1104-bar helipad truss 

CN  PFD CN  PFD CN  PFD CN  PFD CN  PFD CN  PFD CN  PFD 

1 77.1 5 31.2 9 77.1 13 64.6 17 33.3 21 70.8 25 41.7 

2 93.7 6 54.2 10 91.7 14 83.3 18 60.4 22 81.2 26 60.4 

3 100.0 7 79.2 11 97.9 15 95.8 19 81.2 23 95.8 27 83.3 

4 100.0 8 100.0 12 100.0 16 100.0 20 100.0 24 100.0 28 100.0 

SD 10.8 SD 29.9 SD 10.3 SD 15.9 SD 28.6 SD 13.4 SD 25.6 

SD: Standard Deviation 

 

 

6. CONCLUSION 
 

The present work, distinguished two major types of violation functions for inequality 

constraints that are common in structural sizing problems. Their pure or combined 

application via seven penalty-handling types were studied. A number of concluding remarks 

are briefed as follows; based on the obtained statistical results.  

Although application of large penalty factors preserves full feasibility over different trial 

runs, it affects the search refinement of the optimization algorithm and does not guaranty 

overpassing local optima to capture the best optimal cost. The proper penalty factor to 

capture minimal cost, is usually less than a value that enforces all designs to be feasible. It 
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depends not only on the problem but also on the type of penalty function for constraint 

handling. 

Considering the treated cases, it was observed that sequential application of sumV and 

supV reveals better feasible results than applying only one of them. It was also declared that 

starting with sumV and continuing the remainder iterations with supV can reveal the most 

desired result; i.e. the least-weight feasible design.  

PFD is defined and traced as a measure for probability of achieving feasible designs via 

independent runs of the algorithm. It was observed that the most successive sequential 

penalty-handling types, brought about relatively lower deviation in PFD than the other PT’s. 

In another word, they can provide superior optimality; however, with partial feasibility ratio 

of optimal designs over different runs. According to this study, the best results of structural 

sizing design were achieved when the staring part of the search (with supV ) was two-third of 

total iterations ending with sumV ; i.e. by applying PT-4. The corresponding PFD was about 

83% in the treated examples. Although such a value is below full PFD; the case is affordable 

in an overall view concerning both feasibility and optimality. A future scope of research, is 

to study nonlinear penalty-included as well as penalty-free techniques in optimization of 

engineering problems. 

 

 

APPENDIX 
 

A brief MATLAB function for OTLBO  
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